Measurements

- Measurements are information that *represent* quantities. A **quantity** is something that has size, magnitude, or amount.
- Example: 1 teaspoon The teaspoon is a unit of measurement, the volume is the quantity. The entire statement is the measurement.

Le Systeme International d'Unites (SI)

- Adopted in 1960 by the General Conference on Weights and Measures.
- Now used and agreed upon by scientists around the world.
- This is basically what we call the "metric" system

SI system

- Has 7 "base units"
- Most other units are derived from combinations of 2 or more "base units"
- Not all units in this book are SI units

SI Base Units

	Quanti	ity Unit U	nit
Quantity	symbol	name abbr	eviation
Length	l	meter	m
Mass	m	gram	g
Time	t	second	S
Temperature	T	kelvin	K
Amount of substance	n	mole	mol

You have a handout with this information on it...

Mass ≠ Weight

- Mass is a measure of the amount of matter, weight depends on the local gravitational field.
- We usually measure mass with a balance, weight is usually measured with a spring scale.
- We will talk about MASS only in this class (leave weight for physics...

Prefixes –Ally Schwabe what do they MEAN

Prefix	Symbol for Prefix	L.	Scientific Notation
exa	E	1 000 000 000 000 000 000	10 ¹⁸
peta	Р	1 000 000 000 000 000	10 ¹⁵
tera	Т	1 000 000 000 000	1012
giga	G	1 000 000 000	10 ⁹
mega	М	1 000 000	10 ⁶
kilo	k	1 000	10 ³
hecto	h	100	10 ²
deka	da	10	10 ¹
		1	10 ⁰
deci	d	0.1	10-1
centi	С	0.01	10-2
milli	m	0.001	10-3
micro	μ	0.000 001	10-6
nano	n	0.000 000 001	10-9
pico	р	0.000 000 000 001	10-12
femto	f	0.000 000 000 000 001	10 ⁻¹⁵
atto	а	0.000 000 000 000 000 000)1 10 ⁻¹⁸

- The handout has the important prefixes you need to know on it.
- Give some examples of what you might measure with these units in **meters.**
- You should know the prefixes on the handout because you will use them...over and over...and over again.

Which unit (with appropriate prefix) would you use to measure this stuff?

• Diameter of an atom

• Temperature of the summit of Mt. Rainier

• Weight of an elephant

• Area of the Tacoma Dome

• Temperature in outer space

<u>Derived SI Units</u>

- What does the word "derived" mean?
 - What are some examples of things you might derive?
- Are derived units...units that are created by combining 2 or more SI Base Units (usually through multiplying or dividing base units).
- For example:
 - \circ Length (m) x Length (m) = Area (m²)
 - \circ Mass (kg)/Volume (m³) = Density (kg/m³)

Example: Volume

- The amount of space occupied by an object.
- Solids:

 $\mathbf{m} \, x \, \mathbf{m} \, x \, \mathbf{m} = \mathbf{m}^3$

• Liquids and gases: Liter = 1 dm³ =

 1000 cm^3

So $1 \text{ mL} = 1 \text{ cm}^3$

Density

- The ratio of mass to volume, or mass divided by volume
- D = mass/volume or D = m/v
- Often (though not always) expressed in units of g/cm³.

Now Do the Practice Problems on the Back of Your Notes!

Due tomorrow if you don't finish in class...