7.3 GUIDE TO FINDING FORMULA MASS/MOLAR MASS OF A COMPOUND, \% COMPOSITION, \& EMPIRICAL FORMULAS

To find the FORMULA MASS (\& MOLAR MASS) OF A COMPOUND:

1. Determine what types of atoms (which elements) and how many of each atom that you have in your compound. Make a list

$$
\text { a. Example: } \mathrm{H}_{2} \mathrm{O}, \begin{aligned}
& 2 x \text { Hydrogen } \\
& 1 \times \text { Oxygen }
\end{aligned}
$$

2. Then determine the atomic mass for each atom and multiply that mass by the number of atoms of each element you have.
a. Example
$2 x$ (mass of hydrogen atom $=1.0079 \mathrm{amu})=2.0158 \mathrm{amu}$
$1 x$ (mass of oxygen atom $=15.9994 \mathrm{amu})=15.9994 \mathrm{amu}$
3. Then add up the masses to find the mass of the chemical formula.
a. Example
$2.0158+15.9994=18.0152$ amu

To find the MOLAR MASS OF A COMPOUND:

Use the same process as you did for the formula mass, but report your masses in units of grams per mole instead of amu!!!!!

EXAMPLES (show all your work so you can use it as a guide later!):

- Find the formula mass for KClO_{3}
- Find the formula mass for $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
- Find the molar mass for $\mathrm{Al}_{2} \mathrm{~S}_{3}$
- Find the molar mass for $\mathrm{Ba}(\mathrm{OH})_{2}$

To convert between mass, moles, and atoms

To convert moles to grams:
\# moles given $x \mathrm{~g} / \mathrm{mol}$ (or molar mass) $=$ grams
To convert mass to moles:
Grams given $\times 1 /($ molar mass) $=$ moles
To convert moles to number of atoms/molecules:
Moles given $x 6.022 \times 10^{23}=$ number of atoms/molecules

EXAMPLES (show all your work so you can use it as a guide later!):

- What is the mass in grams of 2.50 mol of oxygen gas $\left(\mathrm{O}_{2}\right)$?
- How many moles of compound are there in $6.60 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
- How many molecules are there in 2.89 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

To find the PERCENT COMPOSITION of the elements in a compound:

1. To find percent composition by mass: take the mass of each element (taking into account how many atoms of each you have) and divide that by the formula mass of your sample. Multiple that by 100. The percentage will be the same regardless of the sample size!
a. Example: $\mathrm{H}_{2} \mathrm{O}$. Formula weight is 18.0152 amu
$2 x$ (mass of hydrogen atom $=1.0079 \mathrm{amu})=2.0158 \mathrm{amu}$
$1 x$ (mass of oxygen atom $=15.9994 \mathrm{amu})=15.9994 \mathrm{amu}$
\% composition of H in $\mathrm{H}_{2} \mathrm{O}$: (2.0158/18.0152) $\times 100=11 \%$
\% composition of O in $\mathrm{H}_{2} \mathrm{O}$: $(15.9994 / 18.0152) \times 100=89 \%$
To check your answer, make sure the percentages add up to 100%.
2. To find percent composition by moles:
a. Molar mass of each element divided by molar mass of the compound $\times 100$

EXAMPLES (show all your work so you can use it as a guide later!):

- Find the percentage compositions of: $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
- Magnesium Hydroxide is 54.87% oxygen by mass. How many grams of oxygen are in 175 g of the compound?

Background Info for Empirical Formulas

Empirical formulas: show the smallest whole-number mole ratio of atoms in the compound.
Molecular formulas: show exactly how many of each type of atom are in one molecule of the compound.

Example: Glucose

Empirical formula of glucose: $\mathbf{C H}_{\mathbf{2}} \mathbf{O}$

- this formula shows that the ratio of $\mathrm{C}: \mathrm{H}: \mathrm{O}$ in glucose is 1:2:1

Molecular formula: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- This formula shows that is 1:2:1
a glucose molecule contains 6 carbons, 12 hydrogens, \& 6 oxygens

To Calculate Empirical Formulas

There are two ways to calculate this:

1. Calculating empirical formulas from experimentally determined masses
a. Convert the given masses to moles of each element (by dividing by the molar mass)
b. Compare ratio of moles of each element and divide all the moles by the smallest number
c. If result from step " b " gives a ratio with a decimal, convert it to a fraction and multiply all the ratios by the denominator of the fraction to get whole numbers
d. Use the resulting values as the subscripts for each element

Example: Analysis of a 10.150 g sample of a compound known to contain phosphorus and oxygen indicates 4.433 g of the sample is made of phosphorus. What is the empirical formula of the compound?
2. Calculating empirical formulas from percentage composition
a. Convert percentage of each element to grams, assuming you have a 100 g sample (note: so if you have $33 \% \mathrm{Na}$ in a compound, you will assume you have 33 grams of Na for this step).
b. Multiply the grams of each element by $1 /$ molar mass of that element.
c. Compare ratio of moles of each element and divide all the moles by the smallest number
d. If result from step " b " gives a ratio with a decimal, convert it to a fraction and multiply all the ratios by the denominator of the fraction to get whole numbers
e. Use the resulting values as the subscripts for each element

Example: Quantitative analysis shows that a compound contains 32.38% sodium, 22.65% sulfur, and 44.99% oxygen. Find the empirical formula.

Finding a Molecular Formula from an Empirical Formula

The relationship between empirical and molecular formulas is:
Empirical formula = molar mass (this will be given to you in the problem)
X*

So... empirical formula $=\quad X^{*}$
Molar mass

* " X " is the factor you multiply the subscripts of your empirical formula by to get your molecular formula

Example: In a compound with empirical formula $\mathrm{P}_{2} \mathrm{O}_{5}$, experimentation showed that the molar mass of this compound is $283.89 \mathrm{~g} / \mathrm{mol}$. What is the compound's molecular formula?

