Name: \qquad
Period: \qquad
Date: \qquad

CHAPTER 3 REVIEW - Due Thursday 11/14!!!

Below are concepts you should know for your test. This is not an exhaustive review-you must use your blue learning reflection packet as a knowledge checklist to make sure you understand everything!!!!
Below is a list of what some suggested items to study:

- Atomic theory timeline
- 3.1 Chapter Review worksheet (yellow)
- 3.3 Chapter Review worksheet (white--this was your notes on isotopes, average atomic mass, etc.)
- Average atomic mass lab
- Molar conversion practice (and notes) sheet
- Molar Conversion Assignment
- Molar Conversion Quiz
- Any and all notes you may have taken in this chapter!

1. Define each of the following:
a. atomic number:
b. mass number:
c. relative atomic mass:
d. average atomic mass:
e. mole:
f. Avogadro's number:
g. molar mass:
h. isotope:
i. nuclide:
2. Determine the number of protons, electrons, and neutrons in each of the following isotopes (you should be able to determine this from your knowledge of the atom and subatomic particles):
a. sodium - 23
protons:
neutrons:
electrons:
b.

$$
{ }_{20}^{42} \mathrm{Ca}
$$

protons:
neutrons:
electrons:
3. What nuclide is used as the standard in the relative scale for atomic masses? What is its assigned atomic mass?
4. Fill in the table below for the Mass Numbers of the Hydrogen Isotopes

	Atomic Number	Number of Neutrons	Mass Number
Protium			
Deuterium			
Tritium			

5. Write the nuclear symbol and hyphen notation for each of the following isotopes (so you should have two numbers for each of these):
a. mass number of $\mathbf{2 8}$ and atomic number 14
b. 26 protons and 30 neutrons
c. 56 electrons and 82 neutrons
6. Explain each of the following in terms of Dalton's atomic theory:
a. The law of conservation of mass
b. The law of definite proportions
c. The law of multiple proportions
7. Describe Thomson's experiment and what he discovered with it.
8. Describe Millikan's experiment and what he discovered with it.
9. Describe Rutherford's experiment and what he discovered with it.
10. How are isotopes of the same element alike? How are they different?
11. Describe what the mole is and why it is useful.
12. How do molar mass and atomic mass relate? What makes this relationship possible?
13. Three isotopes of argon occur in nature. Calculate the average atomic mass of argon to two decimal places, given the following atomic masses and abundances of each of the isotopes: argon-36 ($35.97 \mathrm{amu} ; \mathbf{0 . 3 3 7 \%}$), argon-38 ($\mathbf{3 7 . 9 6} \mathrm{amu}$; 0.063%), and argon-40 ($\mathbf{3 9 . 9 6} \mathrm{amu}$; 99.600%).
14. Determine the mass in grams of each of the following:
a. $\mathbf{3 . 0 0} \mathbf{~ m o l ~ A l}$
b. 1.38 mol N
c. 2.25×10^{24} atoms $\mathbf{Z n}$
d. 4.65×10^{23} atoms Fe
15. Determine the moles of each of the following:
a. 40.1 g Ca
b. 150 g S
c. $2.25 \times 10^{\mathbf{2 4}}$ atoms $\mathbf{Z n}$
d. 4.65×10^{23} atoms Fe
16. Determine the number of atoms of each of the following:
a. 6.50 mol Cu
b. 150 g S
c. $1.75 \times 10^{-6} \mathbf{~ m o l ~ H g}$
