Mole Ratio Worksheet

1. Consider the chemical reaction represented by the equation below:
$3 \mathrm{MgCl}_{2}+2 \mathrm{Al} \rightarrow 3 \mathrm{Mg}+2 \mathrm{AlCl}_{3}$
a. If 8 moles of magnesium chloride react with enough aluminum, how many moles of aluminum chloride are produced?
b. How many moles of magnesium chloride are needed to with 10 moles of aluminum?
2. Consider the following chemical reaction:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow \quad 2 \mathrm{NH}_{3}$
a. How many moles of nitrogen gas are needed to react with to react with 7.5 moles of hydrogen?
b. How many moles of ammonia would you get if 4.5 moles of hydrogen gas reacted?
c. How many moles of nitrogen gas are needed in order to produce 5 moles of NH_{3} ?
3. Consider the combustion of methane $\left(\mathrm{CH}_{4}\right)$.
a. How many moles of carbon dioxide are obtained when 20 moles of methane are burned?
b. If only 15 moles of oxygen are available, how many moles of methane will burn?
c. During combustion, 12 moles of carbon dioxide were obtained. How many moles of water were also obtained?

More practice : mole to mole, mole to gram, gram to mole

1) Give the reaction: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
a) How many moles of O_{2} are needed if we wish to make 6 moles of Fe react?
b) In the lab, a reaction involving 624 g of O_{2} occurred. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ were produced?
c) How many grams of Fe do you need if you wish to produce 7 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
2) Given the reaction: $6 \mathrm{Mg}+\mathrm{P}_{4} \rightarrow 2 \mathrm{Mg}_{3} \mathrm{P}_{2}$
a) How many moles of Mg are needed in order to produce 1213.83 g of $\mathrm{Mg}_{3} \mathrm{P}_{2}$?
b) 495.52 g of P_{4} react with some magnesium. How many moles of $\mathrm{Mg}_{3} \mathrm{P}_{2}$ are produced?
c) How many moles of P_{4} are needed to react with 9 moles of Mg ?
3) Given the reaction: $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
a) If 40.4 g of H_{2} were used-up in a reaction, how many moles of HCl were produced?
b) How many grams of Cl_{2} are needed if we wish to produce 6 moles of HCl ?
c) How many moles of Cl_{2} are needed in order to produce 291.68 g of HCl ?
