	Definition	Steps in Creating the	How Do You Name It?	Example
		Formula		
Monatomic	Ions formed from a	No formulas – just ions!!	For cations (+): The elements	Cation: Ex. Ca
Ions	single atom. Main		name.	is calcium;
	group ions form to a	Write the atomic symbol	For anions (-): The ending of the	Ca+2 is
	noble gas	with its charge as a	name is dropped and the ending -	Calcium
	configuration	superscript	ide is added.	
	(remember, group 1 is	Ca ⁺²		Anion: Ex. F
	+1, group 2 is +2, etc.)			is flourine; F-
				is flouride

Try a few examples:

- a. What do you call a sodium ion (Na+1)?
- b. How would you express a sulfide ion and what charge would it have?
- c. What charge does a phosphide ion have?
- d. What charge does a potassium ion have? How would you express it?

	Definition	Steps in Creating the	How Do You Name It?	Example
		Formula		
Binary <u>Ionic</u>	Compounds composed	1. Write the symbols and	1. Use the name of the cation (+) first	Al ₂ O ₃
Compounds	of two elements, the	charges of the ions side by	2. Then use the anion (-) name, but	Aluminum
	total charge must be	side, cation (+) first.	drop the ending and add -ide	Oxide
	equal to zero.	Al ³⁺ O ²⁻	Note: You are basically just naming	
(only has TWO	_	2. Cross over the charges	the monatomic ions separately and	
elements in the		by using the absolute	then putting them together	
compounds)		value of each ion's charge		
		as the subscript for the		
		other ion. Make sure that	NEVER USE PREFIXES!	
		the total charges now add		
		up to zero.		
		$Al_2^{3+} O_3^{2-}$		
		3. The reason for this is so		
		that the number of		
		electrons that are being		
		given by the cation can be		
		received by the anion(s).		
		Al_2O_3		

Try a few examples:

Write the formula for the binary ionic compounds formed between the following elements:

- a. Calcium and iodine
- b. Sodium and sulfur

Name the following compounds:

- a. LiCl
- b. CaCl₂

	Definition	Steps in Creating the	How Do You Name It?	Example
		Formula		
Ionic	D-block elements	Transition metals can	The name won't change (ex.	PbCl ₂
Compounds		have more than one	Fe=iron=iron no matter what the	Lead (II)
that contain		charge (no formulas)	charge)	chloride
Transition				
(d-block)		Figure out the charge of	NEVER USE PREFIXES!	$Pb(NO_3)_4$
Metals		the metal by uncrossing		Lead (IV)
		the subscripts		nitrate

Try a few examples: (Note: I will not expect you to memorize the charges for these—you should be able to figure it out based on the charge of the negative ion or look it up on the table).

Write the formula and give the name for the compounds that form between:

- a. Cu(2+) and Br (-)
- b. Sn(2+) and F(-)
- c. Hg(2+) and S(2-)

Name:

- a. CuO
- b. FeCl₃

	Definition	Steps in Creating the	How Do You Name It?	Example
		Formula		
Compounds	Ionic compounds that	You basically use the same	Same as binary ionic compounds,	Al+3 bonding
containing	use one or two positive	steps as with putting two	except in this case, you won't be	with (SO ₃)-1
Polyatomic Ions	or negative polyatomic	monatomic ions together.	changing the editing of the	
	ions to form ionic	THE TOTAL POSITIVE	polyatomic ion (it stays <i>-ate</i> , or <i>-ite</i> .)	Gives you
(has MORE than	compounds	CHARGE WILL		
two elements in	_	BALANCE THE TOTAL	SEE PAGE 210 FOR LIST OF	Al(SO ₃) ₃ called
compound)	Another note: Are	NEGATIVE CHARGE.	POLYATOMIC IONS	Aluminum
	produced by the loss of	Remember to treat the		Sulfite
	hydrogen ions (H+) from	polyatomic ions as a		
	oxyacids:	package – you will	NEVER USE PREFIXES!	
	Sulfuric acid H ₂ SO ₄	NEVER change the		
	Sulfate SO ₄ ²⁻	formula of a polyatomic		
		ion!!		

Try a few examples: (Note: I expect you to memorize the formulas and charges of the polyatomic ions from the table on page 210 in your book).

Write the formula for:

- a. Copper (II) Sulfate
- b. Potassium Sulfide
- c. Potassium Perchlorate

Give the names for:

- a. Ca(OH)₂
- b. FeCrO₄

	Definition	Steps in Creating the	How Do You Name It?	Example
		Formula		
Molecular	Molecular compounds	You will usually be given	Two ways:	Ex. CCl ₄
(Covalent)	are covalently bonded	the formula or use the	1. The less electronegative element is	
Compounds	units.	name of the compound to	given first. It is given a prefix (ex. di,	Carbon
		figure out the formula	tri, etc.) only if it contributes more	Tetrachloride
			than one atom to a molecule.	
			■ Ex. Carbon = C	Ex. P ₅ O ₂
			■ Ex. Diphosphorus = P ₂	
			2. The second element is named by	Penta-
			combining:	phosphorus
			a. a prefix indicating the	Dioxide
			number of atoms contributed	
			by the element,	
			b. the root of the name of the	
			second element, and	
			■ c. the ending <i>-ide</i> .	
			■ Ex. Trioxide = O ₃	

Note: I expect you to memorize the prefixes on page 212

Name the following:

- a. SO_3
- ь. ICl₃
- c. PBr₅

Write the formulas for:

- a. Phosphorus tetraiodide
- b. Dinitrogen trioxide

	Definition	Steps in Creating the Formula	How Do You Name It?	Example
Binary Acids	Consist of 2 elements, usually hydrogen and one of the halogens (Group 17 elements)	Will always have one hydrogen bonded to a highly electronegative atom to form	To name an acid which contains a monatomic anion: • start the name with hydro • drop the -ide ending of the anion • add the suffix, -ic acid.	Ex. HCl Hydrochloric Acid

Write the formula for:

a. HI

b. HF

	Definition	Steps in Creating the	How Do You Name It?	Example
		Formula		
Oxyacids	Acids that contain	Will always have one	If the anion ends in -ate the acid	Sulfuric acid -
	hydrogen, oxygen, and a	hydrogen bonded to a	name will end as -ic.	H ₂ SO ₄
	third element (usually a	negatively charged group-	If the anion ends in -ite the acid will	Sulfurous acid-
	nonmetal).	-likely a oxyanion (ex.	end as -ous.	H_2SO_3
	·	NO ₃ -)		

Write the formula for:

a. Phosphoric acid

Name:

a. H₂SO₄